CLASS - XII

MATHEMATICS

Relation and Mapping

1. Let relation R in a set $\mathrm{A}=\{2,3,4,5\}$ defined by ' a and b are prime to each other', $a, b \in A$.
(i) Find R,
(ii) Find \mathbf{R}^{-1}.

Ans. (i) Since the relation is 'prime to each other'
\therefore In set A,

$$
\mathrm{R}=\{(2,3),(2,5),(3,2),(3,4),(3,5),(4,3),(4,5),(5,2),(5,3),(5,4)\}
$$

(ii) $R^{-1}=\{(3,2),(5,2),(2,3),(4,3),(5,3),(3,4),(5,4),(2,5),(3,5),(4,5)\}=\mathrm{R}$
2. If $A=\{1,3,5,7\}$ and $B=\{0,1,2,3,4\}$, then find the element of $(A \cap B) \times(A-B)$ in which the relation is 'less than'.

Ans. $\because \mathrm{A}=\{1,3,5,7\} \& \mathrm{~B}=\{0,1,2,3,4\}$
$\therefore \quad A \cap B=\{1,3\} \& A-B=\{5,7\}$
Let the relation 'less than' is denoted by R
$\because \quad(A \cap B) \times(A-B)=\{1,3\} \times\{5,7\}=\{(1,5),(1,7),(3,5),(3,7)\}$
and each element of this set satisfies the relation 'less than'
$\therefore \quad R=\{(1,5),(1,7),(3,5),(3,7)\}$
3. $A=\{4,9,16,25\}, B=\{1,2,3,4\}$ and the relation R from A to B is 'square of'. Find R, domain $\&$ range of R.

Ans. $\because R=\left\{(a, b): a=b^{2}, a \in A, b \in B\right\}$
$\therefore \quad R=\{(4,2),(9,3),(16,4)\}$
$\therefore \quad$ Domain of $\mathrm{R}=\{4,9,16\}$ and range of $\mathrm{R}=\{2,3,4\}$
4. Let the function $f=\{(0,-1),(1,2),(-1,-4),(2,5),(-2,-7)\}$ such that $f(x)=a x+b$, where a, $b \in$ Z. Find $a \& b$.

Ans. Here, $f(0)=-1, f(1)=2, f(-1)=-4, f(2)=5$ and $f(-2)=-7$
$\because f(x)=a x+b$,
$\therefore \quad f(0)=0+b \quad$ and $f(1)=a+b$
or, $-1=0+b \quad$ or, $2=a-1 \quad[\because b=-1]$
or, $\quad b=-1$

$$
o r, \quad a=3
$$

$\therefore \quad f(x)=3 x-1$
Clearly $f(-1)=-4, f(2)=5, f(-2)=-7$, which is true.
$\therefore \quad a=3, b=-1$.
5. $\quad f: R \rightarrow R$ defined as $f(x)=2 x+3, x \in R ; f^{-1}(7)=$?

Ans.: $\because f(2)=2 \times 2+3=4+3=7$
$\therefore \quad f^{-1}(7)=2$.

